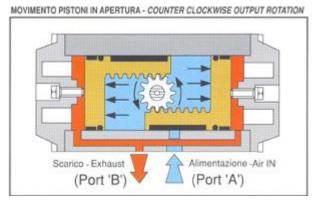
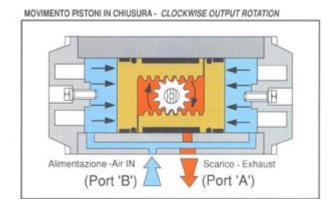


With Complete Installation of Actuators


- with S/S Mounting Bracket
- with Extension Shaft (Stem)
- with **Double Acting Pneumatic Actuator**
- with Spring Return Pneumatic Actuator
- with Electric Actuator (3 Phase, 240V)
- Worm-Gear Operation



Double Acting Actuator (DA):

Counter-clockwise output operation is achieved by inserting

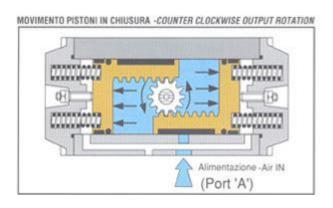
pressure into **Port 'A'**, to force the pistons apart thus rotating the actuator pinion counter clockwise. During its operation, air from the outer chamber is exhausted through **Port 'B'**. Clockwise output operation is achieved by reverse of the above and inserting pressure into **Port 'B'**.

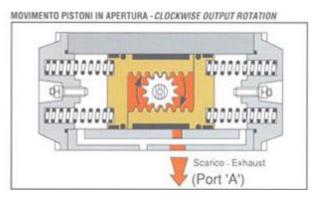
Data Required for Actuator Sizing:

- 1. Valve torque min. 25% Safety recommended
- 2. Double acting or Spring-return operation
- 3. Minimum available operating pressure Selection of Double Acting Actuators (DA):
 - Determine the requirement valve torque, this should include 25% safety margin and the minimum.

 Operating pressure available. Refer to the pressure/torque table and select the minimum pressure column applicable.
- Follow this column down until a value not less than that required is found. Next read across to the left hand column and read the model number to be ordered.
- Example: valve torque 80Nm plus 25% =100Nm, Minimum operating pressure 5 bar. By reading down the 5-bar column afigure. Below 119Nm is 123Nm the model number therefore shown in the left hand column is **AP4DA**.

Remarks: the chosen torque valve, which fixes the type of actuator, has never to be lower than the requested torque of the valve.


MOMENTO TORCENTE - ATTUATORI A DOPPIO EFFETTO (DA) Nm - TORQUE OUTPUT DOUBLE ACTING ACTUATORS (DA)


			PRESSIONE	DI ALIMENTAZIOI	NE - OPERATING P	PRESSURE		
MODELLO	bar	2	3	4	5	6	7	8
MODEL.	PSI	30	44	58	73	87	102	116
AP1 DA	Nm	5.9	8.9	11.8	14.8	17.7	21.7	24,8
	lbf.ln	52.6	79.3	105.2	132	157.8	193.5	221.1
AP2 DA	Nm	9.4	14.1	18.8	23.5	28.2	32,9	37.6
	lbf.in	83.8	125.7	167.7	209.6	251.5	293.5	335.4
AP3 DA	Nm	20	30	40	50	60	70	80
	lbf.in	178.4	267.6	356.8	446	535.2	624.4	713.6
AP3.5 DA	Nm	34	51	68	85	102	119	136
ni ojo on	lbf.in	303.3	454.9	606.5	758.2	909	1061.5	1213.2
AP4 DA	Nm	48	71	95	119	142	168	192
	lbf.in	428.2	633.3	847.4	1061	1266.6	1498.5	1712.6
AP4,5 DA	Nm	87.2	130.8	174.4	218	261.6	305.2	348.8
	lbf.ln	777.8	1166.7	1555.6	1944.5	2333.4	2722.3	3111.2
AP5 DA	Nm	111	167	222	278	333	388.5	444
	lbf.ln	990.1	1489.6	1980.2	2479.7	2970.4	3465.4	3960.5
AP5,5 DA	Nm	157.6	236.4	315.3	394.1	473	551.8	630.6
	lbf.ln	1405.7	2108.6	2812.4	3515.3	4219.1	4922	5624.9
AP6 DA	Nm	227	340	454	567	088	794.5	908
	lbf.ln	2024.8	3032.8	4049.6	5057.6	6065.6	7087	8099.4
APS DA	Nm	426	638	851	1064	1278	1491	1704
0.000.000.00	lbf.In	3800	5691	7591	9491	11382	13299	/15200

Spring Return Actuators (SR):

Pressure applied to Port 'A' will cause the inner chambers to be pressurized, forcing the pistons outward to compress the springs. The pinion is rotated counter-clockwise. Upon release of pressure through Port 'A' the springs will exert pressure to closed the pistons and rotate the pinion clockwise rapidly. This action will often be used to close a 90 deg. turn valve in shutdown mode.

Determine the required valve torque (this should include 25% safety margin), and the minimum operating pressure available. Select from the "Spring Stroke/"0 deg." table a value that is not less than the required valve torque (including safety margin). Next refer to the pressure table and select under your min.

pressure and "0 deg." torque column a figure not les than that required. (including Safety Margin) Example: Valve torque 60 Nm plus 25% = 75Nm. Checking the "Spring Stroke/"0 deg." column, it will be noted the nearest value is 108 Nm. By following the line across to the vertical 5 bar "0 deg." torque column, a figure of 109 Nm is shown therefore, the suitable actuator is AP5SR5. In a normal valve shutdown situation the actuator would operate the valve to break out a less than 108 Nm. If "0 deg." torque at operating pressure is at operating pressure is too low, continue down the column until an acceptable value is found, compare with the corresponding "Spring Stroke/"0 deg." column to ensure that this also is adequate. This model may be used.

PESI - WEIGHTS

IP1 5R	AP2 SH	APS SR	AP3.5 SR	AP4 SR	AP4.5 SR	APS SR	APS.5 SR	APS SR	APS SR
1.08	1.74	3.16	4.06	6.34	9.0	13.1	10.0	24.6	54.5
2.38	3.84	6.97	10.28	13.98	21.61	28.89	41,45	54.2	120.2
	1.08	1.08 1.74 2.38 3.84	1.00 1.74 3.16 2.38 3.84 6.97	1.08 1.74 3.16 4.86 2.38 3.84 6.97 10.28	1.00 1.74 3.16 4.06 0.34 2.38 3.84 6.07 10.28 13.08	1.08 1.74 3.16 4.56 0.34 9.8 2.38 3.84 6.97 10.28 13.98 21.61	1.00 1.74 3.16 4.66 6.34 9.8 13.1 2.38 3.84 6.97 10.28 13.98 21.61 28.89	1.00 1.74 3.16 4.66 0.34 9.8 13.1 18.8 2.38 3.84 6.97 10.28 13.98 21.61 28.89 41.45	AND THE PROPERTY OF THE PROPER

TEMPO DI APERTURA/CHIUSURA (SECONDI) 5.6 BAR / 80 P.S.I. OPENING CLOSING TIME (SECONDS) AT 5.6 BAR/ 80 P.S.I.

WODELFO	AP1	AP2	AP3	AP 3.5	AP 4	AP 4.5	AP5	AP 5.5	AP 6	AP 8
DOPPIG EFFETTO DOUBLE ACTING	Meno di Gese Pierr 1. BDC	Meno di Less man 1 SEC	Mero di Less Man 1 SEC	Marodi Lass Part 1 SEC	Meno pr Lens than t SEC	Less Part	Mane di Lass than 1:25 5ECS	Mano di Lasa than 1.3 SECS	ts - 2 sics	3 i 4 SECS
SEMPLICE EFFETTO SPRING RETURN	Mins di Less Plan 1 SEC	Meno di Lese Plan 1 SEC	Mero di Less Pori	1.5	Meno-di Less than 1.5 SECE	Lens tran	15 + 2 SECS	Mano di Less riser 2 SECS	2 3 SECS	4 / 6 SECS

